National Repository of Grey Literature 6 records found  Search took 0.00 seconds. 
Synthesis of the electronically reconfigurable frequency filters
Michalička, Filip ; Dvořák, Jan (referee) ; Langhammer, Lukáš (advisor)
This diploma thesis deals with design of reconection-less electronically reconfigurable filter structures which have single input and single output using unconventional active elements, which have ability to adjust one of their parameter e.g. gain or transconductance. The first part describes basic parameters of frequency filters, the division of filters by frequency transfer response and used circuit elements, their operational modes, the principle of reconnection-less electronically reconfiguration and the circuit design method MUNV. Second part describes all active elements used in the proposal of filters, their properties and the implementation using existing transistor-level models. The third part contains the design of three reconnection-less electronically reconfigurable filters and the simulations results obtained from simulation programs OrCAD Capture and PSpice. The obtained results were compared with theoretical behaviour. This part also contains results of these analyses: sensitivity, parasitic, Monte Carlo and temperature to determine the behaviour in varied cases.
Utilization of signal-flow graphs in design of the fully-differential filters
Žůrek, Radomil ; Kubánek, David (referee) ; Jeřábek, Jan (advisor)
The dissertation deals with the design of fully differential frequency filters using the signal flow graphs. It presents the procedures for designing frequency filters, focusing on the active elements such as multiple-output current followers (MO-CF) and digitally adjustable current amplifiers (DACA), which work in a current mode. It is theoretically discussed the issue of designing the M-C graphs, which are the graphic analogy of voltage and current incidence matrices. There are also presented three designs of 2nd order frequency filter circuits using the indirect method of design by M-C graphs and one circuit design using the direct method. The results of each simulation and measurement are presented in a module frequency characteristics. Finally, there is a summary of M-C graphs characteristics and applicability.
Proposal of the fractal order filtering structures
Uher, Jiří ; Dvořák, Jan (referee) ; Langhammer, Lukáš (advisor)
This thesis deals with the fractional (1+)-order filters. The proposed filters operate in the current-mode. The derivation of the filters has been achieved using a third-order aproximation of the coresponding fractional-order transfer functions. It also describes active elements such as universal current conveyor, current follower and operational transconductance amplifier. In the end of this thesis some new circuit solutions of the fractional-order filter are proposed. Then the proposed filters are realized and experimentally measured.
Synthesis of the electronically reconfigurable frequency filters
Michalička, Filip ; Dvořák, Jan (referee) ; Langhammer, Lukáš (advisor)
This diploma thesis deals with design of reconection-less electronically reconfigurable filter structures which have single input and single output using unconventional active elements, which have ability to adjust one of their parameter e.g. gain or transconductance. The first part describes basic parameters of frequency filters, the division of filters by frequency transfer response and used circuit elements, their operational modes, the principle of reconnection-less electronically reconfiguration and the circuit design method MUNV. Second part describes all active elements used in the proposal of filters, their properties and the implementation using existing transistor-level models. The third part contains the design of three reconnection-less electronically reconfigurable filters and the simulations results obtained from simulation programs OrCAD Capture and PSpice. The obtained results were compared with theoretical behaviour. This part also contains results of these analyses: sensitivity, parasitic, Monte Carlo and temperature to determine the behaviour in varied cases.
Proposal of the fractal order filtering structures
Uher, Jiří ; Dvořák, Jan (referee) ; Langhammer, Lukáš (advisor)
This thesis deals with the fractional (1+)-order filters. The proposed filters operate in the current-mode. The derivation of the filters has been achieved using a third-order aproximation of the coresponding fractional-order transfer functions. It also describes active elements such as universal current conveyor, current follower and operational transconductance amplifier. In the end of this thesis some new circuit solutions of the fractional-order filter are proposed. Then the proposed filters are realized and experimentally measured.
Utilization of signal-flow graphs in design of the fully-differential filters
Žůrek, Radomil ; Kubánek, David (referee) ; Jeřábek, Jan (advisor)
The dissertation deals with the design of fully differential frequency filters using the signal flow graphs. It presents the procedures for designing frequency filters, focusing on the active elements such as multiple-output current followers (MO-CF) and digitally adjustable current amplifiers (DACA), which work in a current mode. It is theoretically discussed the issue of designing the M-C graphs, which are the graphic analogy of voltage and current incidence matrices. There are also presented three designs of 2nd order frequency filter circuits using the indirect method of design by M-C graphs and one circuit design using the direct method. The results of each simulation and measurement are presented in a module frequency characteristics. Finally, there is a summary of M-C graphs characteristics and applicability.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.